On the Kirchhoff matrix, a new Kirchhoff index and the Kirchhoff energy
نویسندگان
چکیده
منابع مشابه
Computing the additive degree-Kirchhoff index with the Laplacian matrix
For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.
متن کاملOn hyper-Kirchhoff index
The hyper-Kirchhoff index is introduced when the hyper-Wiener operator is applied to the resistance-distance matrix of a connected graph. We give lower and upper bounds for the hyper-Kirchhoff index, and determine the n-vertex unicyclic graphs with the smallest, the second and the third smallest as well as the largest, the second and the third largest hyper-Kirchhoff indices for n ≥ 5. We also ...
متن کاملA Formula for the Kirchhoff Index
We show here that the Kirchhoff index of a network is the average of the Wiener capacities of its vertices. Moreover, we obtain a closed-form formula for the effective resistance between any pair of vertices when the considered network has some symmetries which allows us to give the corresponding formulas for the Kirchhoff index. In addition, we find the expression for the Foster’s n-th Formula.
متن کاملOn the Kirchhoff Index of Graphs
Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ . . .≥ μn−1 > μn = 0. The Kirchhoff index of G is defined as Kf = Kf(G) = n∑n−1 k=1 1/μk. In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus–Gaddum-type result for the Kirch...
متن کاملOn Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2013
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2013-337